Scientific Applications & Research Associates, Inc.

Electrochemistry of Direct Carbon Fuel Cell Based on Metal Hydroxide Electrolyte

Dr. Strahinja Zecevic Dr. Edward M. Patton Dr. Parviz Parhami

Scientific Applications & Research Associates (SARA) Inc. 9300 Gateway Dr., Cypress, CA 90630

Presented at Direct Carbon Fuel Cell Workshop NETL-Pittsburgh, PA July 30, 2003

General Feature of DCFC

- Electrochemical oxidation of Carbon is slow
 - High temperature operation needed
- Two approaches to accelerate the reaction:
 - 1. Solid Oxide Fuel Cell approach @ ~1000 °C
 - Modest results
 - 2. Molten Electrolyte approach @ < 800 °C
 - Very Promising results

DCFC with Molten Electrolytes

Hydroxide Electrolyte

■ 1896 - by W. Jacques (the first DCFC tests)

Carbonate Electrolyte

- 1975 by Weaver at al. @ SRI
- Late 1990's:
 - Hemmes et al. @ Delft University of Technology
 - Cooper et al. @ LLNL

Hydroxide Electrolyte (US Patent No. 6,200,697)

■ 1995 - by SARA Inc.

Why Hydroxide Electrolyte?

Advantages of Hydroxide electrolyte:

- Higher electrical (ionic) conductivity.
 - @450°C ~1.5X than in carbonates @650°C.
- Higher electrochemical activity of carbon
 - *i.e.* higher anodic currents and lower overpotentials
- Lower operation temperatures
- Use of less expensive materials for cell fabrication
 - Less expensive low carbon steels vs. expensive Inconel^R, Hastelloy^R and others
- Higher efficiency of carbon oxidation
 - At lower temperature dominant product is $CO_2 \Rightarrow 4e^-per C$ atom
 - vs. $CO \Rightarrow 2e^-$ at higher temperatures

Limitation of Hydroxide Electrolyte

Hydroxides were rejected in the past because they may absorb CO₂

$$2OH^{-} + CO_{2} = CO_{3}^{2-} + H_{2}O$$

Consequently losing the above advantages

Q: Is there a means to overcome this problem?

A: Yes

Hydroxide to Carbonate Conversion

Chemical formation of carbonate

$$2OH^{-} + CO_{2} = CO_{3}^{2-} + H_{2}O$$
 (1)

Electrochemical formation of carbonate

$$C + 6OH^{-} \rightarrow CO_{3}^{2-} + 3H_{2}O + 4e^{-}$$
 (2)

$$6OH^{-} = 3O^{2-} + 3H_{2}O$$
 (3)

$$C + 3O^{2-} \rightarrow CO_3^{2-} + 4e^-$$
, (rds) (No CO_2 formation!)

Conversion may be prevented or reduced (Patent Pending)

- ✓ **if** $c(H_2O)$ **is high** *i.e.* in acidic (hydrated) melt ⇒ $c(O^{2-}) = low$ ⇒ $c(CO_3^{2-}) = low$ - shown @ SARA
- ✓ In the presence of **oxides** (e.g. Mg, Sb, Si, ...) to be shown

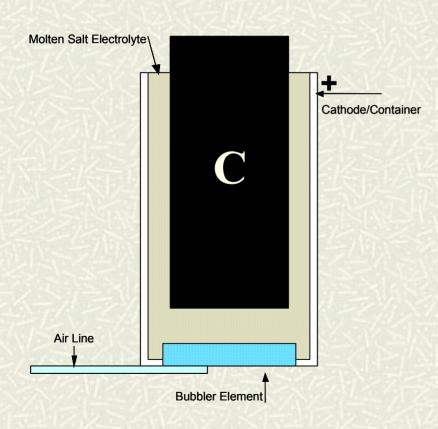
 o MgO has already been proven by W. Jacques
- ✓ In the presence of **oxyanions** (pyrophosphate and persulfate) to be shown

High Water Concentration

Advantages of high water concentration in molten hydroxide

- Helps carbonate hydrolysis (reduces carbonate formation)
- Significantly increases ionic conductivity of the melt
- Significantly decreases corrosion of Ni, Fe and Cr (due to very low concentration of superoxide and peroxide ions)
- High $c(H_2O)$ is easy to maintain by using humid air or (O_2)

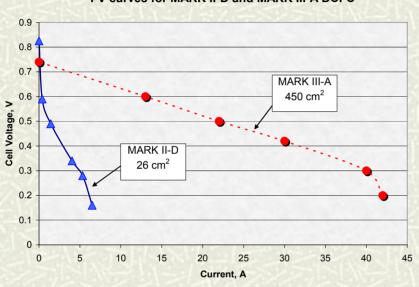
SARA's Primary Objectives


- **♯** Simple cell design (non traditional fuel cell design)
 - Cylindrical geometry
 - Non-porous air cathode
- **♯** Use of inexpensive materials
 - *e.g.* Fe2Ti Iron alloy with Titanium
 - Corrosion stable and catalytically active for O₂ reduction
 - Can be used for both cell container and air cathode (Patent Pending)
- **♯** Performance acceptable for scale-up

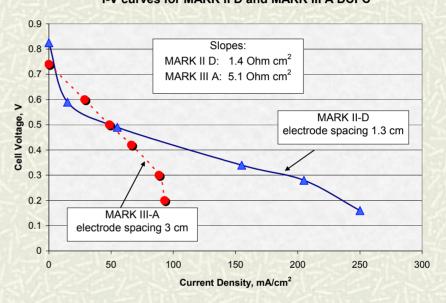
DCFC Design

Design different than traditional Fuel Cell

Completed Cells

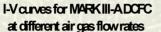

MARK II 26 cm² / 8 A

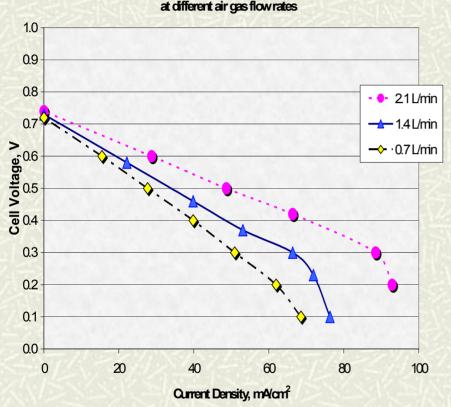
MARK III 450 cm² / 40 A


DCFC Test Results

I-V curves for MARK II-D and MARK III-A DCFC

I-V curves for MARK II D and MARK III A DCFC




Bigger cell gives larger current

Smaller cell gives larger current density because of better design characteristics

DCFC Test Results (cont'd)

Cell Performance

Mixed Control

- ➤ Ohmic control
 - Large electrode spacing (3 cm)
- ➤ Mass transfer control
 - Limiting current due to O₂ reduction
- ➤ Low OCV (~0.75 V)
 - Anode collector design
- Use of Ti doped steel
 - eliminated need for lithiation of NiO cathode (Patent Pending)

DCFC Performance Improvements

Ohmic control

- Reduced electrode spacing
- Better current collector to anode contact

♯ Mass transfer control

- Cathode with larger surface area
- Bubbling optimization (flow rate vs. bubble size)

Open Circuit Voltage

Improved current collector-anode contact

Operation Voltage

- Use carbon anode instead of graphite (derived from coal)
- Graphite anode is the least active C-anode

Future Plan

In the next several months

- > Build new prototypes
 - o MARK IV series with graphite anode and Fe2Ti cathode
- > Carry out testing
 - o I-V curves for cell and electrodes
 - o Product gas analysis efficiency & carbonization estimate

Parameters:

- Temperature (300 °C 700 °C)
- Dry and humid air and pure oxygen
- Gas bubbling rate
- Electrolyte composition
 - Single and mixed hydroxides Na, K, Li
 - Oxygen containing additives SiO₂, MgO, Sb₂O₃, Na₂S₂O₈, Na₄P₂O₇